CONTROLE TECNOLÓGICO DO CONCRETO

MINOS TROCOLI DE AZEVEDO

16/12/2014

NBR 12655 – CONCRETO DE CIMENTO PORTLAND – PREPARO, CONTROLE E RECEBIMENTO – PROCEDIMENTO.

4. ATRIBUIÇÕES DE RESPONSABILIDADES

4.2. PROFISSIONAL RESPONSÁVEL PELO PROJETO ESTRUTURAL

- REGISTRO DE RESISTÊNCIA CARACTERÍSTICA À COMPRESSÃO (Fck) DO CONCRETO.
- ESPECIFICAÇÃO DO Fcj PARA ETAPAS CONSTRUTIVAS.
- ESPECIFICAÇÃO DOS REQUISITOS CORRESPONDENTES À DURABILIDADE.
- ESPECIFICAÇÃO DOS REQUISITOS CORRESPONDENTES ÀS PROPRIEDADES
 ESPECIAIS:
- MÓDULO DE DEFORMAÇÃO MÍNIMO
- OUTRAS PROPRIEDADES

NBR 6118 – PROJETO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO.

Tabela 6.1 – Classes de agressividade ambiental (CAA)

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura
1	Fraca	Rural Submersa	Insignificante
II	Moderada	Urbana ^{a, b}	Pequeno
Ш	Forte	Marinha ^a Industrial ^{a, b}	Grande
IV	Muito forte	Industrial ^{a, c} Respingos de maré	Elevado

Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).

- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- C Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.

NBR 6118 – PROJETO DE ESTRUTURAS DE CONCETO - PROCEDIMENTO.

Tabela 7.1 – Correspondência entre a classe de agressividade e a qualidade do concreto

Concreto a	Tipo b, c	Classe de agressividade (Tabela 6.1)							
Concreto	про з, з	1	II	III	IV				
Relação	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45				
água/cimento em massa	СР	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45				
Classe de concreto	CA	≥ C20	≥ C25	≥ C30	≥ C40				
(ABNT NBR 8953)	СР	≥ C25	≥ C30	≥ C35	≥ C40				

O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

b CA corresponde a componentes e elementos estruturais de concreto armado.

^c CP corresponde a componentes e elementos estruturais de concreto protendido.

NBR 12655 – CONCRETO DE CIMENTO PORTLAND – PREPARO, CONTROLE E RECEBIMENTO – PROCEDIMENTO.

5.6. ESTUDO DE DOSAGEM DO CONCRETO

5.6.3. CÁLCULO DA RESISTÊNCIA DE DOSAGEM

$$Fcj = Fck + 1,65 Sd$$

ONDE:

Fcj É A RESISTÊNCIA MÉDIA DO CONCRETO A COMPRESSÃO, PREVISTA PARA A IDADE DE J DIAS, EM MEGAPASCALS;

Fck É A RESISTÊNCIA CARACTERÍSTICA DO CONCRETO A COMPRESSÃO, EM MEGAPASCALS;

Sd É O DESVIO-PADRÃO DA DOSAGEM, EM MEGAPASCALS

CENTRAL DE CONCRETO Sd = 4,0 MPA

Quadro 4 - Causas mais comuns da variabilidade dos concretos (HELENE & TERZIAN, 1992).

CAUSAS DA VARIAÇÃO	EFEITO MÁXIMO NO RESULTADO					
A - Materiais						
* variabilidade da resistência do cimento	± 12 %					
* variabilidade da quantidade total de água	± 15 %					
* variabilidade dos agregados (principalmente miúdos)(*)	±8%					
B - Mão-de-Obra						
* variabilidade do tempo e procedimento de mistura	- 30 %					
C - Equipamento						
* ausencia de aferição de balanças	- 15 %					
* mistura inicial, sobre e subcarregamento, correias, etc.	- 10 %					
D - Procedimento de Ensaio						
coleta imprecisa	- 10 %					
* adensamento inadequado	- 50 %					
* cura (efeito considerado a 28 dias ou mais)	± 10 %					
* remate inadequado dos topos dos corpos de prova	 30 % para concavidade 					
	 50 % para convexidade 					
* ruptura (velocidade de carregamento)	±5%					

^(*) COMO EXEMPLO: uma diminuição de 0,2 do módulo de finura do agregado miúdo implica um aumento aproximado de 3 %, da massa de agregado graúdo e uma diminuição equivalente da massa de agregado miúdo para manter aproximadamente constantes as principais características do concreto.

6.2. ENSAIO DE RESISTÊNCIA À COMPRESSÃO

6.2.1. FORMAÇÃO DE LOTES - AMOSTRAS - EXEMPLARES - 2 CORPOS DE PROVA;

Tabela 7 — Valores para a formação de lotes de concreto

	Solicitação principal dos elementos da estrutura					
Limites superiores	Compressão ou compressão e flexão	Flexão simples				
Volume de concreto	50 m ³	.100 m ³				
Número de andares		1				
Tempo de concretagem	3 dias de concre	etagem ¹⁾				

¹⁾ Este período deve estar compreendido no prazo total máximo de 7 dias, que inclui eventuais interrupções para tratamento de juntas.

6.2. ENSAIO DE RESISTÊNCIA À COMPRESSÃO

- 6.2.3. TIPOS DE CONTROLE DA RESISTÊNCIA DO CONCRETO;
- 6.2.3.1. CONTROLE ESTATÍSTICO DO CONCRETO POR AMOSTRAGEM PARCIAL
- A) PARA LOTES COM NÚMEROS DE EXEMPLARES 6 < n < 20, O VALOR ESTIMADO DA RESISTÊNCIA CARACTERÍSTICA À COMPRESSÃO (Fckest), NA IDADE ESPECIFICADA, É DADO POR:

$$F_{\text{ckest}} = \frac{2 f_1 + f_2 + ... + f_{m-1}}{m-1} - f_m$$

ONDE:

m = n/2. DESPREZA-SE O VALOR MAIS ALTO DE n, SE FOR IMPAR;

f₁, f₂, ..., f_m VALORES DAS RESISTÊNCIAS DOS EXEMPLARES, EM ORDEM CRESCENTE.

NÃO SE DEVE TOMAR PARA FCKest VALOR MENOR QUE ψ_6 f_1 , ADOTANDO-SE PARA ψ_6 OS VALORES DA TABELA 8, EM FUNÇÃO DA CONDIÇÃO DE PREPARO DO CONCRETO E DO NÚMERO DE EXEMPLARES DA AMOSTRA, ADMITINDO-SE INTERPOLAÇÃO LINEAR.

- 6.2.3. TIPOS DE CONTROLE DA RESISTÊNCIA DO CONCRETO;
- 6.2.3.1. CONTROLE ESTATÍSTICO DO CONCRETO POR AMOSTRAGEM PARCIAL
- B) PARA LOTES COM NÚMERO DE EXEMPLARES n > 20

$$Fckest = Fcm - 1,65 Sd$$

ONDE:

Fcm É RESISTÊNCIA MÉDIA DOS EXEMPLARES DO LOTE, MEGAPASCALS;

Sd É O DESVIO PADRÃO DA AMOSTRA DE n ELEMENTOS, CALCULANDO COM UM GRAU DE LIBERDADE A MENOS [(n-1) NO DENOMINADOR DA FÓRMULA], EM MEGAPASCALS.

6.2.3. TIPOS DE CONTROLE DA RESISTÊNCIA DO CONCRETO;

6.2.3.2. CONTROLE DO CONCRETO POR AMOSTRAGEM TOTAL (100%)

A) PARA
$$n < 20$$
, Fckest = f_1 ;

B) PARA
$$n > 20$$
, Fckest = $f_i i$;

ONDE:

i = 0,05n, QUANDO O VALOR DE i FOR FRACIONÁRIO, ADOTA-SE O NÚMERO IMEDIATAMENTE SUPERIOR.

6.2.3. TIPOS DE CONTROLE DA RESISTÊNCIA DO CONCRETO;

6.2.3.3. CASOS EXCEPCIONAIS

PODE-SE DIVIDIR A ESTRUTURA EM LOTES CORRESPONDENTES A NO MÁXIMO 10 m³ E AMOSTRÁ-LOS COM NÚMERO DE EXEMPLARES ENTRE 2 E 5. NESTES CASOS, DENOMINADOS EXCEPCIONAIS, O VALOR ESTIMADO DA RESISTÊNCIA CARACTERÍSTICA É DADO POR:

Fckest =
$$\psi_6 f_1$$

ONDE:

ψ_6 É DADO PELA TABELA 8, PARA OS NÚMEROS DE EXEMPLARES DE 2 A 5

Condição de preparo		Número de exemplares (n)										
	2	3	4	5	6	7	8	10	12	14	≥16	
A	0,82	0,86	0,89	0,91	0,92	0,94	0,95	0,97	0,99	1,00	1,02	
B ou C	0,75	0,80	0,84	0,87	0,89	0,91	0,93	0,96	0,98	1,00	1,02	

Tabela 8 - Valores de W.

MINOS TROCOLI DE AZEVEDO

DIFICULDADES OPERACIONAIS EM CANTEIROS DE OBRAS

- DIFICULDADES DE ACESSO
- LOCAL INADEQUADO PARA A MOLDAGEM E ESTOCAGEM DOS CP's
- AVISO INTEMPESTIVO DE PROGRAMAÇÃO DE CONCRETAGEM
- ACÚMULO DE CAMINHÕES NA DESCARGA
- NECESSIDADE DE MAIOR NÚMERO DE MOLDADORES PARA MAIS DE 70 m3 POR DIA
- INFORMAÇÃO MAIS PRECISA DO LOCAL CONCRETADO PARA FINS DE RASTREABILIDADE
- OCORRÊNCIA DE CHUVAS NO PERÍODO DE APLICAÇÃO DO CONCRETO
- COLETA E TRANSPORTE DOS CORPOS DE PROVA